Seriation in Paleontological Data Using Markov Chain Monte Carlo Methods

نویسندگان

  • Kai Puolamäki
  • Mikael Fortelius
  • Heikki Mannila
چکیده

Given a collection of fossil sites with data about the taxa that occur in each site, the task in biochronology is to find good estimates for the ages or ordering of sites. We describe a full probabilistic model for fossil data. The parameters of the model are natural: the ordering of the sites, the origination and extinction times for each taxon, and the probabilities of different types of errors. We show that the posterior distributions of these parameters can be estimated reliably by using Markov chain Monte Carlo techniques. The posterior distributions of the model parameters can be used to answer many different questions about the data, including seriation (finding the best ordering of the sites) and outlier detection. We demonstrate the usefulness of the model and estimation method on synthetic data and on real data on large late Cenozoic mammals. As an example, for the sites with large number of occurrences of common genera, our methods give orderings, whose correlation with geochronologic ages is 0.95.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

Joint Modeling of Dynamic and Cross-Sectional Heterogeneity: Introducing Hidden Markov Panel Models

Researchers working with panel data sets often face situations where changes in unobserved factors have produced changes in the cross-sectional heterogeneity across time periods. Unfortunately, conventional statistical methods for panel data are based on the assumption that the unobserved cross-sectional heterogeneity is time constant. In this paper, I introduce statistical methods to diagnose ...

متن کامل

dclone: Data Cloning in R

The dclone R package contains low level functions for implementing maximum likelihood estimating procedures for complex models using data cloning and Bayesian Markov Chain Monte Carlo methods with support for JAGS, WinBUGS and OpenBUGS.

متن کامل

Bayesian Analysis of the Stochastic Switching Regression Model Using Markov Chain Monte Carlo Methods

This study develops Bayesian methods of estimating the parameters of the stochastic switching regression model. Markov Chain Monte Carlo methods data augmentation and Gibbs sampling are used to facilitate estimation of the posterior means. The main feature of these two methods is that the posterior means are estimated by the ergodic averages of samples drawn from conditional distributions which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Computational Biology

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2006